
Evaluating the Effectiveness of Pre-Condition Generation Tools
Sejal K. Parmar (sejalkp2@illinois.edu), Project Mentor: Angello Astorga, PURE Mentor: Wei Yang

Motivation: Writing specifications(preconditions, postconditions) for programs provides a means for describing
behavioral properties of the program. However, the task of writing them is error prone and time consuming.

Given the importance of this task, there exists a large body of research work addressing this problem.
Goal: Evaluate the effectiveness of automated precondition inference tools.

Motivation

Black Box vs. White Box
Black Box:

Typically, these approaches are data-
driven. They extract tests(as data points)

from random sampling or test
generation tools and feed these data

points to a machine learning algorithm.

• Wrote specifications for commutativity and
idempotency of methods using Parameterized Unit
Tests

• Evaluated two tools for precondition inference: one
based on testing + machine learning (black-
box)(submitted for publishing) and the other based
on testing + dynamic analysis (white-box)

• Performed a manual inspection to assess the
goodness of preconditions based on correctness and
complexity

White Box:
This approach leverages inner

structural and semantic properties.
These types of approaches can also use
an input test suite and generalize from

the observed behavior in test runs.

By manual inspection of results of both white box and black box approaches, we can analyze the outputs to see
which one produces better results.

My Work

Idempotency:

𝜑 റ𝑥 ֜𝑀1 റ𝑥 ==𝑀1(റ𝑥)𝑀1 റ𝑥
If a call to M1 is made once or multiple times, the results will still be
the same.

Application: Fault-Tolerance: When an online shopper pays, clicking
submit multiple times should only make one transaction

Commutativity of Methods:

𝜑 റ𝑥, റ𝑦 ֜𝑀1 റ𝑥 𝑀2(റ𝑦) ==𝑀2(റ𝑦)𝑀1 റ𝑥
The order in which methods M1 and M2 occur does not matter.

Application: Parallel Computing: Compilers cannot parallelize a
wide range of computations unless they recognize and exploit
commuting operations

White Box Precondition:

1 == (Stack<int>)null || methodof(s1.Clone) !=
methodof(Stack<int>.Clone) || −1 >= s1._size ||
−1 >= s0 || s4 < s0 || s1._size < s0 …
Which simplifies to:

𝐹𝑜𝑟 𝑎𝑙𝑙 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑠𝑡𝑎𝑐𝑘 𝑚𝑢𝑠𝑡 𝑒𝑞𝑢𝑎𝑙 𝑧𝑒𝑟𝑜

Black Box Precondition:

(contains(x) and ((−x + peek()) <= 0) &&
(not ((−x + Peek()) <= −1)))

Which simplifies to:

Contains(x) && Peek() == x

